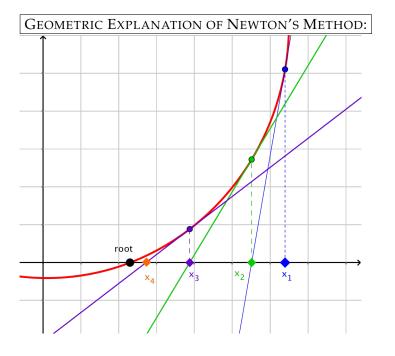

LECTURE NOTES: 4-8 NEWTON'S METHOD (PART 1)


MOTIVATING QUESTION: Recall that we wanted to find the *x*-intercepts of $f(x) = x - 2 \sin x$. From the graph we knew there exists a positive (and negative) solution. How to find it?

WARM-UP PROBLEMS:

1. Write the equation of the line tangent to the curve y = f(x) at the *x*-value x_1 . Sketch the tangent line in the "cartoon" of f(x) below.

- 2. In your picture above, label the *x*-value where the tangent line intersects the *x*-axis as x_2 .
- 3. Solve for x_2 using your equation from part (1) above.

MODEL PROBLEM: Let $f(x) = x^3 - 5x$.

1. Factor f(x), find its roots algebraically, and sketch its graph.

2. Assume you couldn't factor the function and you wanted to find its positive root. What would be a reasonable first guess and why?

3. Using a first guess of $x_1 = 3$, calculate 2 iterations of Newton's method

4. How close is your estimate of the root, x_3 , to the actual root?